VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.E.E.) VI-Semester Backlog Examinations, July-2022

Linear Control Systems

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	Distinguish between AC servo motor and 3 Phase Induction motor.	2	1	1	1,2
2.	Define type and order of control system and Identify the type and order of the following transfer function $G(s) = \frac{s+2}{s^3(s^2+4s+5)}$	2	3	1	1,2
3.	The roots of a characteristic equation are on the imaginary axis. What type of damping does the system exhibits?	2	1	2	1,2
4.	State R-H stability criterion	2	1	2	1,2
5.	Draw the Bode plot of the factor 1/s.	2	2	3	1,2
6.	Evaluate the resonant peak of the system represented by the transfer function $G(s) = \frac{1}{s^2 + 4s + 16}$	2	3	3	1,2
7.	Write the condition to evaluate the stability of system using Nyquist criterion and explain all the terms in the equation.	2	2	4	1,2
8.	Define the terms Gain Margin and Phase margin.	2	1	4	1,2
9.	Enumerate the advantages of state space representation.	2	2	5	1,2
10.	What are the minimum number of state variables required for a system of 5 th order?	2	2	5	1,2
	Part-B $(5 \times 8 = 40 \text{ Marks})$	2.15.			
11. a)	Differentiate between open loop and closed loop system.	4	2	1	1,2
b)	Obtain the transfer function of the lead network shown in figure	4	3	1	1,2
	$e_i(t)$ C R_2 $e_o(t)$				

Define the three error coefficients and show the effect of three error coefficients on steady state error.	4	1	2	1,2
Consider the unity feedback control system whose open loop transfer function is	4	3	2	1,2
$G(s) = \frac{50}{s(1+0.1s)}$. Determine time response specifications of the system.				
A unity feedback system has $G(s) = \frac{80}{s(s+2)(s+20)}$. Sketch the Bode plot and comment on the stability of the system/	8	3	3	1,2
For feedback control system $G(s)H(s) = \frac{40}{(s+2)(s^2+2s+2)}$. Determine the stability of system from Nyquist plot.	5	3	4	1,2
Draw the polar plot of the transfer function $G(s)H(s) = \frac{12}{s(s+2)(s+1)}$	3	3	4	1,2
Obtain the solution of state equation through Laplace transform method.	4	2	5	1,2
2	4	3	5	1,2
Find C(s)/R(s) for the system shown in figure using Mason's Gain formula.	4	3	1	1,2
R(s) 1 G ₁ G ₂ G ₃ G ₄ G ₅ 1 C(s)				
-	1	Defi	2	810
centroid, break away points, the value of K for which the system is marginally stable.			2	01,2
Answer any <i>two</i> of the following:				
What are compensators? Discuss the steps involved in design of lead compensator.	4	1	3	1,2
Explain the use of mapping theorem in applying Nyquist stability criterion.	4	2	4	1,2
Discuss the properties of state transition matrix.	4	2	5	1,2
	coefficients on steady state error. Consider the unity feedback control system whose open loop transfer function is $G(s) = \frac{50}{s(1+0.1s)}$ Determine time response specifications of the system. A unity feedback system has $G(s) = \frac{80}{s(s+2)(s+20)}$. Sketch the Bode plot and comment on the stability of the system/ For feedback control system $G(s)H(s) = \frac{40}{(s+2)(s^2+2s+2)}$. Determine the stability of system from Nyquist plot. Draw the polar plot of the transfer function $G(s)H(s) = \frac{12}{s(s+2)(s+1)}$. Obtain the solution of state equation through Laplace transform method. Derive the state space model of the transfer function $T(s) = \frac{2}{s^3+s^2+2s+3}$. Find $C(s)/R(s)$ for the system shown in figure using Mason's Gain formula. P(s) 1	coefficients on steady state error. Consider the unity feedback control system whose open loop transfer function is $G(s) = \frac{50}{s(1+0.1s)}$. Determine time response specifications of the system. A unity feedback system has $G(s) = \frac{80}{s(s+2)(s+20)}$. Sketch the Bode plot and comment on the stability of the system? For feedback control system $G(s)H(s) = \frac{40}{(s+2)(s^2+2s+2)}$. Determine the stability of system from Nyquist plot. Draw the polar plot of the transfer function $G(s)H(s) = \frac{12}{s(s+2)(s+1)}$ 3 Obtain the solution of state equation through Laplace transform method. Derive the state space model of the transfer function $T(s) = \frac{2}{s^3+s^2+2s+3}$ Find $C(s)/R(s)$ for the system shown in figure using Mason's Gain formula. R(s) 1	coefficients on steady state error. Consider the unity feedback control system whose open loop transfer function is $G(s) = \frac{50}{s(1+0.1s)}$ Determine time response specifications of the system. A unity feedback system has $G(s) = \frac{80}{s(s+2)(s+20)}$. Sketch the Bode plot and comment on the stability of the system/ For feedback control system $G(s)H(s) = \frac{40}{(s+2)(s^2+2s+2)}$. Determine the stability of system from Nyquist plot. Draw the polar plot of the transfer function $G(s)H(s) = \frac{12}{s(s+2)(s+1)}$ Obtain the solution of state equation through Laplace transform method. Derive the state space model of the transfer function $T(s) = \frac{2}{s^3+s^2+2s+3}$ Find $C(s)/R(s)$ for the system shown in figure using Mason's Gain formula. For a unity feedback system $G(s) = \frac{\kappa}{s(s+4)(s+2)}$. Determine the centroid, break away points, the value of K for which the system is marginally stable. Answer any <i>two</i> of the following: What are compensators? Discuss the steps involved in design of lead compensator. Explain the use of mapping theorem in applying Nyquist stability criterion.	coefficients on steady state error. Consider the unity feedback control system whose open loop transfer function is $G(s) = \frac{50}{s(1+0.1s)}.$ Determine time response specifications of the system. A unity feedback system has $G(s) = \frac{80}{s(s+2)(s+20)}.$ Sketch the Bode plot and comment on the stability of the system/ For feedback control system $G(s)H(s) = \frac{40}{(s+2)(s^2+2s+2)}.$ Determine the stability of system from Nyquist plot. Draw the polar plot of the transfer function $G(s)H(s) = \frac{12}{s(s+2)(s+1)}$ 3 3 4 Obtain the solution of state equation through Laplace transform method. Derive the state space model of the transfer function $T(s) = \frac{2}{s^3+s^2+2s+3}$ Find $C(s)/R(s)$ for the system shown in figure using Mason's Gain formula. For a unity feedback system $G(s) = \frac{K}{s(s+4)(s+2)}.$ Determine the centroid, break away points, the value of K for which the system is marginally stable. Answer any two of the following: What are compensators? Discuss the steps involved in design of lead compensator. Explain the use of mapping theorem in applying Nyquist stability criterion.

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	21%
ii)	Blooms Taxonomy Level – 2	32%
iii)	Blooms Taxonomy Level – 3 & 4	47%

